Syllabus for Physics 1201.100 - (5 Cr) - Spring 2016
Revisions to the Syllabus and other important information will appear on class physics web page. Laboratory and discussion sections will meet during the first week of class.

Instructor: Kenneth Heller
Office: 348, Physics and Nanotechnology Building (PAN)
Office hours: M, Tu, W after class in 125 Willey and by appointment
Email: heller@umn.edu

TA Office Hours: In 40 Williamson
beginning the second week of classes. The schedule will be posted outside of room 140 and on the class physics web site.

Class Moodle web site: Go to MyU
Class Physics web site (http://www.physics.umn.edu/classes)
Computer Coach web site (https://palweb.spa.umn.edu/1201)

Necessary Books & Tools:
Sternheim & Kane: General Physics 2nd Edition
Physics Laboratory Instructions for Physics 1201 (download)
Laboratory journal: University of Minnesota 2077-S (bookstore)
I-clicker 2
Simple Scientific Calculator

In addition, you may want to get a brief calculus reference such as:
Ayres/Mendelson: Schaum's easy outlines Calculus
Morgan: Calculus Lite
Thompson: Calculus Made Easy

The Class
Welcome to Physics 1201. This is the first semester of a two-semester introductory course in physics for life science students. This class is required because it is a necessary step in the study of biological systems. This course is designed to prepare you for your chosen field by giving you:

- A useful understanding of the very small number of fundamental principles of physics that underlie the vast diversity of the biological world.

- Skills necessary for modeling the complex processes occurring in modern biology by applying the fundamental principles of physics.

- Practice deciding which principles and techniques are applicable to a situation.

- Practice applying quantitative reasoning and mathematical procedures, especially calculus, to a situation to predict its outcome.

- Practice communicating technical information in an organized manner.

This course is designed to help you achieve these goals. We will do our best to help you understand the concepts presented at a level that will enable you to apply them to new situations. For this level of understanding, memorizing concepts or procedures is not sufficient or even useful. We emphasize the application of physics by giving quizzes in which you will face situations for the first time. The pace of
this course should allow you to understand the material in depth but it does move right along. Don't fall behind. Learning physics is no different from learning anything else. It requires your active participation and lots of practice. What you get out of a course depends on the productive effort and quality time you put into it.

The course approaches physics from a point of view common in biology. Analyzing complex systems is emphasized from the beginning. To make connections clearer, the order of the course will not match the textbook. As in any science, we will use mathematics as the most concise and precise description of a phenomena. We assume that you have a practical knowledge of algebra, geometry, trigonometry, and a working knowledge of the basic ideas of calculus. Throughout this sequence of physics courses you will meet mathematical techniques that you have not yet had in a mathematics class. Don't worry. We will introduce mathematics as it is needed. In addition to mathematics, we will require that you always use and communicate a logical and organized process when problem solving. Since physics is about reality, the course will draw on a large amount of knowledge from your personal experiences, biology courses, chemistry courses, math courses, reading, movies, and TV. All of your knowledge is relevant. This course is not, and can not be, self-contained. It assumes you have a personal set of experiences from which to work. The laboratory section will help you firm up some of these experiences and give you experience with systems that may be less familiar.

We will do what we can to facilitate your learning by giving you several different environments to help you explore your brain’s unique neural connections. Each of these learning environments, listed below, is designed to accomplish a different goal. Some will be more natural to you than others but it is important that you participate actively in all of them. Learning means developing skills and thought patterns that are not natural or comfortable for you. Preparing for a professional life requires learning in as many different ways as possible.

Lectures: Individual learning in a large class. Because everyone comes into the class with a different set of experiences, everyone will learn something different from the lecture. To make lectures meaningful, you must add your experiences to the material presented. To help you do this, the evening before every lecture, you will be asked to answer a few questions online about the upcoming lecture. Just attending lecture even if you take good notes is not a good use of your time. Lectures are about constantly examining your existing knowledge and anticipating what will happen next. At some point in a lecture you should expect to be lost. At that point in the lecture, your existing knowledge does not fit the structure of physics. This valuable experience tells you where your learning needs to occur. To make lectures useful you must read the assigned text material and attempt some the assigned problems before coming to class. This will allow you to focus on the concepts and procedures necessary for you. Notes are provided online. Looking at them before the lecture will give you a sense of what is going to happen. However, what is actually presented will deviate from the notes based on class response so the initial posted notes may not always reflect what happens in class. Updated notes will be posted at the end of every week. Although having a copy of these notes to look at during lecture can be comforting, learning will be more efficient if you do not bring them to the lecture. During the lecture, follow the basis of the decisions presented and answer any questions that are raised. Take your own sparse notes during the lecture only about those items that puzzle you or that you especially want to remember. As soon after the lecture as possible, look at your notes to remind yourself what you did not understand. Get help as soon as possible from other students, the TAs in the physics help room, or the professor when you are confused. Being confused means you are learning but the confusion needs to be resolved which may take some time. A primary purpose of the lecture is to stimulate you to identify the confusion that you have with the material. During the lecture you should always be able to:
Answer the following questions about the lecture material: Why this material important to me? How is it related to other things I know? How can it be used? How is it related to my questions about the text reading? How is it related to what we did yesterday? How is it related to the lab? If you cannot answer these questions, get help before the next lecture. The answer to these questions will be different for every individual so help entails articulating your motivations, experiences, understanding of physics, and the connections between them.

Observe and follow the chain of decisions presented to solve problems using the basic principles of physics. This set of decisions is not unique so your way of solving the problem might be different.

Ask questions of the lecturer and your fellow students to make sure the concepts and techniques make sense to you while they are being presented.

Answer questions to ensure that you follow the concepts and techniques being presented. To facilitate this, there is an electronic response system using your clicker.

Discuss your thoughts and listen to the thoughts of others sitting around you. Because these brief discussions are an important part of your learning, sit with people who will listen to your ideas, express their own ideas, and engage in discussion that is helpful to you. Change who you sit near in class if the interactions with your neighbors are not helping you.

Laboratories: Small-group learning in a small class. Each group’s experience is generated by the needs and interests of its members. Sometimes the laboratory material will precede the lectures and sometimes follow them. When the laboratory precedes the lecture material on that subject, it allows you to determine what you need to clarify from the lecture. When it follows the lecture material, it tests your ability to apply and clarify that material based on real experiences. To make the laboratory meaningful, before coming to lab, you must read the assigned sections of the textbook, read the assigned problems in the laboratory manual and have an idea of what you will do. In addition, you need to make your best attempt to answer the warm-up questions in the laboratory manual, and arrive at the prediction needed to begin the lab problem. In the lab you will test your physics knowledge and reasoning by comparing your predictions to those of your fellow students and then to reality. The laboratory allows you to:

- Predict the behavior of objects to determine whether your ideas of physics agree with reality.
- Apply the physics concepts you have learned to real situations.
- Practice using problem-solving techniques with feedback from other students, your instructor, and reality.
- Develop your technical communication skills by discussing physics concepts and laboratory techniques with your group and other groups.
- Develop your technical communication skills by keeping a detailed written record of your work and thoughts in a laboratory journal.
- Develop your formal technical communication skills by writing laboratory reports.
- Improve your ability to work in a collaboration to accomplish a technical goal effectively.
- Improve your leadership skills when working in a technical collaboration.
• Receive coaching to improve your knowledge of physics concepts and problem solving techniques from your fellow students and the instructor.

Discussion sections: Small-group learning in a small class. Each group’s experience is generated by the needs and interests of its members. To make the discussion section meaningful, before coming read the assigned sections of the textbook, read the preceding lecture notes, and make your best attempt to solve the assigned problems. In the discussion section you will test your physics knowledge, quantitative reasoning skills, and ability to apply mathematics to physics by combining your ideas with those of your fellow students to arrive at a problem solution. In this environment you should be able to:

• Practice problem solving techniques with feedback from fellow students.
• Apply physics concepts to new situations with feedback from fellow students.
• Get help from other students in recognizing where your ideas differ from reality.
• Discuss physics concepts and problem solving techniques with your group.
• Improve your ability to work in a collaboration to accomplish a technical goal.
• Improve your leadership skills when working in a technical collaboration.
• Receive coaching to improve your knowledge of physics concepts and problem solving techniques from your fellow students and instructor.

Office visits: Individual or small-group learning tailored to individual needs. To make the visits meaningful, before coming read the assigned sections of the textbook, read the preceding lecture notes, and make your best attempt to solve the assigned problems. Have a specific problem that you have partially solved to illustrate your difficulty. Ask the instructor to observe your way of solving a specific problem and comment on your reasoning or procedures. It is usually not helpful if the instructor shows you how they solve the problem. In this environment you should be able to:

• Receive coaching to improve your knowledge of physics concepts and problem solving techniques.

Homework: Individual. Attempt the assigned problems before the lectures on that material to allow you to focus on your needs during the lecture. To make homework meaningful, before doing it read the assigned sections of the textbook, and review the applicable lecture notes. Always work assigned problems as if you were taking a quiz without looking back in the textbook, lecture notes, or online answers. Write as much detail as if you were going to be graded on your work. If you get stuck, stop the problem and read the relevant sections of the text and lecture notes. If this does not help, get help from friends or the instructor’s office hours. Never look at the answer to a homework problem unless you are absolutely sure to have solved it correctly. Once you look at the answer, the problem looses its value for your learning. If you have difficulty with the assigned problems, do other similar problems in the textbook until the solutions flow smoothly. Success within the time limits of the quizzes requires that you practice enough to be able to work through a new problem rapidly. In this environment you should be able to:

• Practice solving problems to determine if you can apply the physics concepts learned using the techniques taught in this course. Remember, to be beneficial, practice should use the techniques you will use on the quizzes.
Online Problem Solving Coaches: Individual learning. This web based software will allow you to get help with the detailed decision making process of solving a physics problem. There are three different types of coaches that are all useful in learning different aspects of effective problem solving. Type 1 coaches will guide you through all of the decisions necessary to solve a problem in detail. Type 2 coaches will allow you to test your physics decision making by correcting the computer when it makes mistakes. This type of coach will help you develop the skills of evaluating your own problem solving and determining what to do if you find you have probably made a mistake. Type 3 coaches have you attempt to solve the problem first on your own. The coach will then help you evaluate whether you understood the important aspects of the problem. It will also allow you to get help in the specific area of problem solving that you determine. Remember, software cannot replace a human in helping you understand an aspect of physics that is confusing to you. At best the software coaches can affirm where you do understand the physics and techniques needed in the course and narrow down any region of confusion where you need human help. Online coaches exist only for some topics of the course.

Quizzes: Individual and group learning. In this environment you should be able to:

- Communicate your knowledge of physics concepts and problem-solving techniques.

GRADING:
The grade for Physics 1201 will be based on 4 quizzes, laboratory, in-class questions, pre-lecture questions, and a final examination. The majority of your grade in this course will be based on your ability to communicate your physics knowledge by solving problems on quizzes, in laboratory reports, and on the final examination. Problem solutions will be graded based on your written communication of a logical and organized process grounded in the correct assessment of the physics of a situation. All problems must be solved algebraically before numbers are used. Words, pictures, diagrams, phrases, and a logical mathematical development with well-defined quantities are the key elements in this communication. Correct units must be specified. No credit will be given for disconnected diagrams, isolated equations, or any answer that is not justified by a preceding logical development. In the case of an incorrect solution to a problem, partial credit will be given for the communication of logical and organized solution steps up to the point that the solution departs from a correct analysis of the physics involved. In other words, you will only receive credit if we can determine from your writing: what you are doing, why you are doing it, and that your reasoning is correct.

Quizzes: 4 Quizzes will be given during the scheduled lecture period on Fridays. The tentative dates will be **February 5, February 26, March 25**, and **April 15**. These quizzes will usually consist of one qualitative section and 2 problems taken individually. Another quiz problem will be given during the discussion session on **February 4, February 25, March 24**, and **April 14**. That problem will be solved collaboratively with all group members receiving the same score for that problem. **Only those participating in all discussion sessions during the preceding weeks will be allowed to take the group part of the quiz.** Quizzes will be returned in either laboratory or discussion section the following week. **No early, late, or make-up quizzes will be given.**

Laboratory: Because this course satisfies University requirements as a laboratory science class and as a writing intensive course, **you must receive a minimum laboratory grade of 60% to receive a passing grade in the course.** The laboratory grade will be based on the demonstration of a well organized and correct written technical communication of the physics concepts of this course in your laboratory journal and laboratory reports, well thought out predictions, answers to the warm-up questions in the laboratory instructions, and collaborative laboratory skills as evidenced by effective group work. To ensure that you have a conceptual introduction to the physics and mathematical
concepts needed for beginning the lab, you will take a computerized quiz on the textbook reading that is the background for each lab. **No one will be allowed to participate in the laboratory unless they have passed the computerized preparation quiz for that topic.** Failure to participate in the laboratory will result in a laboratory grade of 0 for that topic. **There are no make-up laboratory sessions.** The laboratory preparation quiz is available on the web. It is an open book, open notes quiz. The quiz may be taken as often as necessary but must be **passed by the time designated by your TA.** A passing grade is 75%. If you fail to pass the quiz after two attempts, get help from your instructors or fellow students. Leave time to get help so don’t wait to take the quiz at the last minute. No laboratory makeup will be allowed except in situations officially recognized by the University. In that case, the laboratory work must be made up by arrangement with your instructor during that same week.

Grades for the laboratory work will be determined in part by laboratory reports (one for each laboratory topic), in part by your work in the laboratory, in part by a final laboratory exam, and in part by your work in answering the prediction and other questions turned in before lab. The predictions and warm-up questions assigned by your TA must be turned in no later than **the time designated by your TA.** The specific part of the laboratory for which you will write a report will be assigned to you by your instructor at the end of each laboratory topic (about every three weeks). Reports should be no longer than 5 nor shorter than 3 typed pages (using a word processor is required and such facilities are supplied by the University) including all necessary predictions, graphs, data tables, and calculations. Reports must be delivered to your laboratory instructor **electronically** for grading **at a time designated by your TA.** Late reports will not be accepted. Graded reports will be returned to you not later than your next laboratory meeting. Details of the laboratory grading are posted on the class web page. Remember this is a writing intensive course so your grade will depend on both your skill in communicating your physics knowledge in an appropriate manner for a technical report. This course will have four laboratory reports.

Final examination: A 3-hour final will be given Wednesday, May 11 from 8:30 – 11:30 am. **No early, late, or make-up finals will be given** except for students who meet the University requirements. In those cases, the make-up final will be given Friday, May 13 from 8:30-11:30 am.

In-Class Questions: At random times during the lecture you will be asked to answer a question using your clicker. Credit is given only for correct answers.

Homework: Homework will not be collected but it is essential that you practice solving problems every day by working out those at the end of the textbook chapter. The number of problems you need to attempt will vary for each person and each topic. It is strongly recommended that you solve at least the problems listed on the class page. **At least one quiz problem per test will be adapted from that list of problems.**

Course grade: The course grade will be determined by combining the grades from the various components of the course in the following way.

a) Each of the 4 quizzes will count as 16% (any quizzes lower than your final will be dropped).

b) The final will count as 16% of your grade if no quiz is dropped, 32% if one quiz is dropped, 48% if two are dropped, 64% three are dropped, 80% if four are dropped.

c) The laboratory will count as 16%.

d) In-lecture questions will count as 2%.

e) Pre-lecture questions will count as 2%.

All grades will be on a scale of 0-100%. The numerical score will be weighted in accordance with the distribution given above, again on a scale of 0-100. The final letter grade for the course will then be assigned as follows:
<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>greater than or equal to 90%</td>
<td>_greater than 90% and greater than or equal to 85%</td>
</tr>
<tr>
<td>A-</td>
<td>less than 90% and greater than or equal to 85%</td>
<td>B+</td>
</tr>
<tr>
<td>B</td>
<td>less than 80% and greater than or equal to 75%</td>
<td>C+</td>
</tr>
<tr>
<td>B-</td>
<td>less than 75% and greater than or equal to 70%</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>less than 60% and greater than or equal to 55%</td>
<td>D+</td>
</tr>
<tr>
<td>C-</td>
<td>less than 55% and greater than or equal to 50%</td>
<td>D</td>
</tr>
<tr>
<td>D</td>
<td>less than 45%</td>
<td>F</td>
</tr>
</tbody>
</table>

Example of grade calculation: Consider the set of grades: 86%, 59%, 74%, 90% (quizzes); 79% (final); 87% (laboratory); 80% (pre-lecture), and 100% (in-class). The quizzes with scores of 59% and 74% will be dropped. The total numerical score is then:

\[
\text{Total score} = (86+90)(0.16)+(79)(0.48)+(87)(0.16)+(80)(0.02)+(100)(0.02) = 83.6,
\]

yielding a grade of B+. Suppose the scores for the final and the second quiz were exchanged, so that the score on the final was the lowest. Then the total numerical score would be

\[
\text{Total score} = (86+79+74+90)(.16)+(59)(0.16)+(87)(0.16)+(80)(0.02)+(100)(0.02) = 79.6,
\]

yielding a grade of B.

What do the grades mean in this University?

A: achievement that is outstanding relative to the level necessary to meet course requirements.

B: achievement that is significantly above the level necessary to meet course requirements.

C: achievement that meets the course requirements in every respect.

D: achievement that is worthy of credit even though it fails to meet fully the course requirements.

F: represents failure (or no credit) and signifies that the work was either (1) completed but at a level of achievement that is not worthy of credit or (2) was not completed.

How does the University grade definition translate to this class?

A: You communicate a good working knowledge of physics, mathematics, and logic. You occasionally make some minor mistakes but no major physics, logic, or mathematical errors. You can feel confident in applying physics. You should offer physics help to others when necessary. It is always a good idea to have someone go over your physics reasoning before applying it to any situation that has consequences since no one is perfect.

B: You communicate an adequate working knowledge of physics, math, and logic. You make an occasional major physics error and some minor mistakes in physics, logic, or mathematics. You can offer physics advice to others when necessary. Always have someone carefully check your physics and reasoning before applying it to a situation that has consequences.

C: You communicate a familiarity with physics, math, and logic. You can recognize when most of the major concepts apply to a situation. You give a reasonable interpretation of how a problem is related to physics and make a good but sometimes incomplete attempt at constructing a logical solution. You tend to make some major physics errors together with other minor mistakes. You know when to apply your physics knowledge and generally how to go about it but will need to get help before you use physics, mathematics, or logic in any situation that has consequences.
D: You communicate that you have attended the physics class and read the text. However, you often do not interpret problems in a complete manner and often cannot relate a problem to useful physics concepts. You do not communicate that you can construct a logical problem solution. You tend to make many major physics errors, have missing and erroneous concepts, and make other major mistakes in both logic and mathematics. Do not attempt to use physics, mathematics, or logic in any situation that has consequences.

F: Your work shows no evidence of having taken this physics course or you did not satisfactorily complete the laboratory for this class.

University Learning and Development Outcomes addressed by this course:

This course directly addresses 3 of the 7 University of Minnesota learning outcomes for all undergraduates:

- Can identify, define, and solve problems
- Can locate and critically evaluate information
- Can communicate effectively

It will also give you practice in the 7 University of Minnesota developmental outcomes for all undergraduates:

- Responsibility and accountability by making appropriate decisions on behavior and accepting the consequences of their actions.
- Independence and Interdependence by knowing when to collaborate or seek help and when to act on their own
- Goal orientation by managing their energy and attention to achieve specific outcomes
- Self-awareness by knowing their personal strengths and talents and acknowledging their shortcomings
- Resilience by recovering and learning from setbacks or disappointments
- Appreciation of differences by recognizing the value of interacting with individuals with backgrounds and/or perspectives different from their own
- Tolerance of ambiguity by demonstrating the ability to perform in complicated environments where clear-cut answers or standard operating procedures are absent.

TENTATIVE SCHEDULE

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Chapters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 1 - 3</td>
<td>Forces and Equilibrium Problem Solving</td>
<td>Chap 1.1, Chap. 2.1 (vector components), Chap. 3.1-5, 12 (not example 3.18), Chap. 13.1, Chap. 4.10</td>
</tr>
<tr>
<td>Week 4</td>
<td>Torque and objects in equilibrium</td>
<td>Chap. 4.1, 2, 4 –9, Chap. 8.1, 2</td>
</tr>
<tr>
<td>Week 5 - 8</td>
<td>Force, Energy Transfer, and Conservation of Energy</td>
<td>Chap. 1.1 – 1.3, Chap. 6.1-6, 9, 11, Chap. 13.2 -8</td>
</tr>
<tr>
<td>Week 9 –10</td>
<td>Energy, Systems, & Cycles</td>
<td>Chap. 12.3 -7, Chap. 10.1-6, Chap. 11.1-2, 7</td>
</tr>
<tr>
<td>Week 11 –12</td>
<td>Entropy & Free Energy</td>
<td>Notes, Chap. 11.3</td>
</tr>
<tr>
<td>Week 13 –15</td>
<td>Using Force to Predict Motion</td>
<td>Chap. 1, Chap. 2, Chap. 3.6-8, 12, Chap. 5.1, 5.2, Chap. 9, Chap. 14.5</td>
</tr>
</tbody>
</table>
Responsibilities:
The University of Minnesota assumes that all students enroll in its programs with a serious learning purpose and expects them to be responsible individuals who demand of themselves high standards of honesty and personal conduct.

All students are expected to behave at all times with the utmost respect and courtesy toward all of their fellow students, their instructors, and are expected to have the highest standards of honesty and integrity in their academic performance. Any behavior that disrupts the classroom learning environment or any attempt to present work that the student has not actually prepared as their own work or to pass an examination by improper means, is regarded as a serious offense which may result in the expulsion of the student from the University. The minimum penalty for such an offense is a failing grade for this course. Aiding and abetting the above behavior is also considered a serious offense resulting in equally severe penalties.

Classroom Courtesy:
Lectures end when the idea or technique under discussion has been concluded and the lecturer has clearly indicated that the students are free to leave. For this reason, lectures are rarely expected to end exactly at the end of class time. Every student is expected to respect fellow students and the lecturer by being attentive until the class is dismissed. Packing up books, putting on coats, or standing up while the lecture is in progress interferes with the learning of other students and shows disrespect for all members of the class and for the educational process. Those few students who know they must leave the class before the lecture ends should have the courtesy and respect to sit in the rear of the class and near an aisle so that they can exit the classroom without disturbing the other students. Students who do not have a crucial appointment before the end of the lecture, should not sit in these seats but have the courtesy to sit toward the front or center of the class. Only students sitting at the ends of rear rows are allowed to leave class before it is dismissed by the instructor.

Mental Health and Stress Management:
Learning is, by its nature, stressful. A course that is well matched to your needs will push you to achieve goals that are beyond your current capabilities. Sometimes this educational stress can combine with other sources of stress in your life to lead to an unhealthy situation. As a student you may experience a range of issues that can cause barriers to learning, such as strained relationships, increased anxiety, alcohol/drug problems, feeling down, difficulty concentrating and/or lack of motivation. These mental health concerns or stressful events may lead to diminished academic performance or reduce a student's ability to participate in daily activities. University of Minnesota services are available to assist you with addressing these and other concerns you may be experiencing. You can learn more about the broad range of confidential mental health services available on campus via http://www.mentalhealth.umn.edu/

Policies of the University of Minnesota:
- Student conduct code http://oscai.umn.edu/know-code/scc-simplified
- Disability Accommodations https://diversity.umn.edu/disability/
- Student Responsibilities for Teaching and Learning http://www.policy.umn.edu/Policies/Education/Education/STUDENTRESP.html
- Makeup Work for Legitimate Absences http://policy.umn.edu/Policies/Education/Education/MAKEUPWORK.html
• Grading
 http://policy.umn.edu/Policies/Education/Education/GRADINGTRANSCRIPTS.html

• Sexual Harassment
 http://www.policy.umn.edu/Policies/hr/HRMisc/SEXUALHARASSMENT.html

• Equity, Diversity, Equal Opportunity, and Affirmative Action
 http://regents.umn.edu/sites/regents.umn.edu/files/policies/Equity_Diversity_EO_AA.pdf

• Academic Freedom

Departmental Policies:
 ATHLETES must provide their official University of Minnesota athletic letter containing the approved competition schedule to their instructor and the staff in office 148. Away exams will be arranged with the athletic adviser traveling with the team. Accommodations will be made for official university sports only.

 DISABILITY SERVICES: If you have accommodations for this course, please provide the staff in office 148 with a copy of your accommodation letter for the current semester. Exams will be arranged according to accommodations and sent to the testing center for administration.

Open-Door Policy:
 If any difficulties or problems arise in this course that interfere in any way with your learning or optimum performance, we would very much like to hear about it. Please stop by to see any of the instructors in this course at any time with any matter that you’d like to discuss. We will do our best to deal with problems promptly and effectively. We also appreciate hearing about the course from students at any time, and we encourage you to come any time you’d like to. Please get in touch with us in person or by e-mail.
 Our doors are open and we appreciate feedback!