University of Minnesota
School of Physics & Astronomy

Nuclear Physics Seminar

Friday, March 31st 2017
11:15 am:
Speaker: Cheng-Hsien Li, University of Minnesota
Subject: Density Matrix Treatment of Neutrino Oscillations In Vacuum

Motivated by our earlier estimate that shows an enormous degree of overlap among neutrino wave packets (WPs) from astrophysical sources, I will present a derivation of vacuum oscillation probability for detecting one neutrino from a pair of neutrino WPs which are described by an anti-symmetric 2-particle wave function. I will begin by briefly reviewing the oscillation probability in the one-particle framework and recast the probability as the expectation value of a projection operator which projects a neutrino WP state onto the detected WP state. In the two-particle framework, such expectation value can be computed with the help of the density matrix of the 2-particle wave function. Additional interference terms in the derived oscillation probability appear to be invariant under arbitrary re-phasing of the relevant WP states but these terms will nevertheless vanish due to the orthogonality between the two neutrino WPs. Therefore, the derived oscillation probability reduces to a simple sum of one-particle oscillation probabilities.

The weekly calendar is also available via subscription to the physics-announce mailing list, and by RSS feed.