University of Minnesota
School of Physics & Astronomy

Physics and Astronomy Calendar

Thursday, February 21st 2019
3:35 pm:
Physics and Astronomy Colloquium in Physics Tate B50
Speaker: Flavio Cavanna, Yale
Subject: Lifting the lid on DUNE, the new international mega-science project in the US

The experimental discoveries of the last half century have placed neutrinos in the spotlight to unlock the mysteries of the matter's abundance unbalance in the Universe and of the ultimate fate of the stars. The lack of direct observations of proton decays, on the other hand, keeps at bay the dream that the forces of nature were unified at the beginning of time.
The Deep Underground Neutrino Experiment (DUNE) is the new leading-edge, international mega-science experiment for neutrino science and proton decay search.
DUNE will consist of two paired neutrino detectors placed in the world’s most intense neutrino beam. One massive detector will be installed deep underground at the SURF laboratory, in South Dakota — 1,300 kilometers away from FERMILAB, where the second detector will be positioned just downstream the neutrino source. Detecting the energetic beam neutrinos at the far site and comparing with those detected at the near site can give insight about our matter dominated universe. The underground location of the far detector, screened from the overwhelming cosmic ray flow, may allow to detect tiny signals from neutrinos originated by a core-collapse supernova in the Milky Way and thus possibly peer inside a newly-formed neutron star. And finally, the extra-large amount of mass of the detector may allow primordial symmetries to occasionally resurface inside a proton and spontaneously morphing a quark into a lepton, with the proton instantly falling apart into a detectable flash of radiation.
But not only large mass and far distance matter to pursue this ambitious discovery plan: unprecedented detection technologies and a worldwide effort to build the detector are required. DUNE will use the state-of-the-art Liquid Argon TPC technology to instrument deep underground 70.000 tons of Liquid Argon at 87K, with millimeter scale 3D precision.
A 1 kTon precursor of the far LAr-TPC detector has been constructed and recently activated at the CERN Neutrino Platform, and is now taking data. A first look of the spectacular events collected will be shown.

Faculty Host: Roger Rusack

The weekly calendar is also available via subscription to the physics-announce mailing list, and by RSS feed.