University of Minnesota
School of Physics & Astronomy
Home > People >

Publications

Oriol T. Valls

Ising Model on a random network with annealed or quenched disorder
A. N. Malmi-Kakkada, O.T. Valls and C. Dasgupta, Phys. Rev. B 90, 024202 (2014)

Download from http://arxiv.org/abs/1406.7031

Abstract

We study the equilibrium properties of an Ising model on a disordered random network where the disorder can be quenched or annealed. The network consists of four-fold coordinated sites connected via variable length one-dimensional chains. Our emphasis is on nonuniversal properties and we consider the transition temperature and other equilibrium thermodynamic properties, including those associated with one dimensional fluctuations arising from the chains. %CD change in wording We use analytic methods in the annealed case, and a Monte Carlo simulation for the quenched disorder. Our objective is to study the difference between quenched and annealed results with a broad random distribution of interaction parameters. The former represents a situation where the time scale associated with the randomness is very long and the corresponding degrees of freedom %associated with the randomness can be viewed as frozen, while the annealed case models the situation where this is not so. We find that the transition temperature and the entropy associated with one dimensional fluctuations are always higher for quenched disorder than in the annealed case. These differences increase with the strength of the disorder up to a saturating value. We discuss our results in connection to physical systems where a broad distribution of interaction strengths is present.