University of Minnesota
School of Physics & Astronomy
Home > People >

Publications

Robert Gehrz

Collimation and Asymmetry of the Hot Blast Wave from the Recurrent Nova V745 Sco.
J. J. Drake, L. Delgado, J. M. Laming, S. Starrfield, V. Kashyap, S. Orlando, K. L. Page, M. Hernanz, J-U. Ness, R. D. Gehrz, D. van Rossum, and C. E. Woodward., 2016, ApJ, 825, 95.

Download from https://arxiv.org/pdf/1604.04537.pdf

Abstract

The recurrent symbiotic nova V745 Sco exploded on 2014 February 6 and was observed on February 22 and 23 by the Chandra X-ray Observatory Transmission Grating Spectrometers. By that time the supersoft source phase had already ended and Chandra spectra are consistent with emission from a hot, shock-heated circumstellar medium with temperatures exceeding 107 K. X-ray line profiles are more sharply peaked than expected for a spherically-symmetric blast wave, with a full width at zero intensity of approximately 2400 km s−1 , a full width at half maximum of 1200 ± 30 km s−1 and an average net blueshift of 165 ± 10 km s−1 . The red wings of lines are increasingly absorbed toward longer wavelengths by material within the remnant. We conclude that the blast wave was sculpted by an aspherical circumstellar medium in which an equatorial density enhancement plays a role, as in earlier symbiotic nova explosions. Expansion of the dominant X-ray emitting material is aligned close to the plane of the sky and most consistent with an orbit seen close to face-on. Comparison of an analytical blast wave model with the X-ray spectra, Swift observations and near-infrared line widths indicates the explosion energy was approximately 1043 erg, and confirms an ejected mass of approximately 10−7M . The total mass lost is an order of magnitude lower than the accreted mass required to have initiated the explosion, indicating the white dwarf is gaining mass and is a supernova Type 1a progenitor candidate