University of Minnesota
School of Physics & Astronomy

Condensed Matter Seminar

Wednesday, April 24th 2019
1:25 pm:
Speaker: Ming Yi, Rice University
Subject: Role of Orbital Physics in Iron Chalcogenide Superconductors

Electron correlation effects give rise to a variety of emergent phenomena in quantum materials—high temperature superconductivity, electronic nematicity, Mott insulating phase, magnetism. The family of Fe(Se,Te) superconductors plays a remarkable host to all of these phenomena in different parameter regimes. In this talk, I will present angle-resolved photoemission results on two aspects of electron correlation effects in this material family—i) orbital-selective Mott insulating behaviors towards the FeTe end of the phase diagram, and ii) electronic nematicity in completely detwinned FeSe. Both examples showcase the phenomenal way that correlation effects rewrite the low energy electronic states of a material system, and reveal the exceptional role the orbital degree of freedom plays in composing the fundamental physics in iron chalcogenide superconductors.

Faculty Host: Rafael Fernandes

The weekly calendar is also available via subscription to the physics-announce mailing list, and by RSS feed.