Main navigation | Main content
Spin-triplet superconductor Sr2RuO4 was predicted to support exotic objects such as half-quantum vortices, which carry a magnetic flux half of the flux quantum Phi_0=hc/2e. We report electrical transport measurements on micron-sized, doubly connected cylinders of Sr2RuO4 single crystals with the cylinder axis along the c axis. Large amplitude magnetoresistance oscillations were observed, revealing unconventional Little-Parks effect dominated by vortex crossing. The free energy barrier that controls the vortex crossing was modulated by the magnetic flux enclosed in the cylinder, an in-plane field, measurement current, and factors related to sample geometry. Distinct features on magnetoresistance peaks were found consistent with the emergence of the half-quantum state in this material, only in samples for which the vortex crossing is confined at specific parts of the sample.
The weekly calendar is also available via subscription to the physics-announce mailing list, and by RSS feed.