University of Minnesota
School of Physics & Astronomy
Home > About > News > News >

General News

Minnesota physicists receive grant to develop quantum computing

Vlad Pribiag
Vlad Pribiag
Richard Anderson

Professors Vlad Pribiag and Paul Crowell from the School of Physics and Astronomy are part of a group that received a $2.25 million grant from the U.S. Department of Energy to develop materials and device knowledge for creating quantum computing.

Current computers use zeroes and ones represent two states, like an on and off switch, to makes sense of the data we input. Quantum computing uses quantum-mechanical phenomena, which describes nature at the smallest scales of energy levels of atoms and subatomic particles. Quantum computing is based on the fact that tiny particles, such as electrons or photons, can simultaneously take on states that we would normally deem mutually exclusive. This creates endless possibilities for solutions, especially in the area of information processing.

"As we enter a 'big data' world we need to find new and more efficient ways for dealing with the large amounts of data," said Assistant Professor Vlad Pribiag, who is the lead researcher on the new grant. "Quantum computers—once fully mature systems are developed and deployed—will be capable of solving certain large, extremely complex problems that lie entirely beyond the capacity of even today’s most powerful supercomputers."

Quantum computers are not intended to replace classical computers, they are expected to be an additional tool used to solve complex problems that are beyond the capabilities of today’s technology. Finding more energy efficient computers is also a priority, since the Semiconductor Industry Association predicts that by the year 2040, we will no longer have the capability to power all of the computers around the world.

While there are several proposed approaches for creating a quantum computer, the team led by the University of Minnesota is focusing materials and device development on an approach based on a special type of particle, called a Majorana fermion, which is its own antiparticle. A Majorana-based implementation could potentially lead to a more reliable quantum computer, Pribiag said.

This complex research requires experts from a variety of disciplines including physics, materials synthesis, device nano-fabrication, and computation of materials properties. In addition to Pribiag, the team includes Professor Paul Crowell (physics and astronomy) from the University of Minnesota; Professor Chris Palmstrøm (electrical & computing engineering and materials) from the University of California, Santa Barbara; Professor Sergey Frolov (physics and astronomy) from the University of Pittsburgh; and Professor Noa Marom (materials science and engineering) from the Carnegie Mellon University.

“Quantum information science represents the next frontier in the Information Age,” said U.S. Secretary of Energy Rick Perry in a Department of Energy announcement about the grant. “At a time of fierce international competition, these investments will ensure sustained American leadership in a field likely to shape the long-term future of information processing and yield multiple new technologies that benefit our economy and society.”

The grant from the Department of Energy Office of Science’s Basic Energy Sciences program supports fundamental research to understand, predict, and ultimately control matter and energy at the electronic, atomic, and molecular levels. For a full list of the Quantum Information Science Research Awards, visit the Department of Energy Basic Energy Sciences website.

More information at