University of Minnesota
School of Physics & Astronomy

Biophysics Seminar

Thursday, January 18th 2018
10:10 am:
Biophysics Seminar in PAN 120
Speaker: John Yin, University of Wisconsin
Subject: Paths to biological polymers: an insight from virus infections and origins of life

(1) Given the genome of a virus and PubMed, how well could one predict the one-step growth of the virus? Decades of biochemical and biophysical studies on bacteriophage T7, incorporated into a chemical kinetic model for template-dependent processes of transcription, translation, and genome replication, as well as particle assembly and release, enabled simulation of one-step growth behavior that recapitulated the experimentally observed kinetics of phage growth. Extension of the model and experiments to study the effects of host-cell physiology on phage growth highlighted the host cellular protein synthesis machinery as a key limiting resource for phage growth.
(2) Given amino acid monomers, but no cells, no templates and no protein synthesis machinery, how might the monomers nevertheless form polymers? The synthesis of peptide bonds between amino acids is a condensation reaction that is generally disfavored in aqueous solutions. However, we have found that for appropriate initial conditions of pH and temperature, drying of amino acids can promote their condensation to form peptides.
So what is the common insight from (1) and (2)? The often neglected “nurture” part of “nature versus nurture” can be important. The kinetics of phage growth depends on the physiological state of its host cell, and the de novo synthesis of a polypeptide species critically depends on the acidity and temperature of its initial solution. In short, we are all products of our environments.

Faculty Host: J. Woods Halley

The weekly calendar is also available via subscription to the physics-announce mailing list, and by RSS feed.