Main navigation | Main content
More than a century after the discovery of dissipationless charge transport in mercury below 4.2K, the search for room-temperature superconductivity continues. Record-high transition temperatures above 200K have been achieved but only under the extreme conditions of ultra-high pressure or, possibly, intense transient light fields. The leading candidate for realizing ambient superconductivity have remained strong electronic correlations, an established ingredient in unconventional high-temperature copper-based superconductivity. Iron-based compounds have emerged as entirely distinct species, in which superconductivity can be refined to a single atomic layer and enhanced to occur at 65K by interfacial interactions. Here, we will consider the influence of many-body effects on the low-energy charge transport and band structure in iron-based superconductors and parent compounds in order to shed light onto the microscopic mechanism of superconducting pairing in this novel class of materials.
The weekly calendar is also available via subscription to the physics-announce mailing list, and by RSS feed.