Main navigation | Main content
Observations have shown that nearly all galaxies harbor massive or supermassive black holes at their centers. Gravitational wave (GW) observations of these black holes will shed light on their growth and evolution, and the merger histories of galaxies. Massive and supermassive black holes are also ideal laboratories for studying strong-field gravity. Pulsar timing arrays (PTAs) are sensitive to GWs with frequencies ~1-100 nHz, and can detect GWs emitted by supermassive black hole binaries, which form when two galaxies merge. The Laser Interferometer Space Antenna (LISA)is a planned space-based GW detector that will be sensitive to GWs ~1-100 mHz, and it will see a variety of sources, including merging massive black hole binaries and extreme mass-ratio inspires (EMRIs), which consist of a small compact object falling into a massive black hole. I will discuss source modeling and detection techniques for LISA and PTAs, as well as present limits on nanohertz GWs from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration.
The weekly calendar is also available via subscription to the physics-announce mailing list, and by RSS feed.