University of Minnesota
School of Physics & Astronomy

Academic Calendar

Friday, December 14th 2018
10:00 am:
Thesis Defense in Peik Hall 325
Speaker: Miranda C. P. Straub, Curriculum and Instruction Department.
Subject: An Empirical Model of Physics Instructors’ Beliefs about the Purpose, Actions, and Context of Doing Homework
This is public portion of Ms. Straub's Thesis Defense. Her advisors are Leon Hsu and Ken Heller.

Over the past half century, researchers and curriculum developers studying physics education have created dozens of innovative curricula and educational tools, broadly referred to as research-based instructional strategies (RBIS), to fit almost any classroom situation. These include cooperative problem solving (Heller & Hollabaugh, 1992; Heller, Keith, & Anderson, 1992), Physics By Inquiry (McDermott, Shaffer, & Rosenquist, 1996), Investigative Science Learning Environment (ISLE) (Etkina & Van Heuvelen, 2007), Studio Physics (Cummings et al., 1999), and Peer Instruction (Crouch & Mazur, 2001) among others. However, the rate of adoption of RBIS remains relatively low. A national survey of post-secondary physics instructors in 2012 showed that only half of physics instructors have ever implemented any RBIS in their classrooms, and many of them ceased to do so after implementation difficulties (Henderson & Dancy). Why aren’t these effective strategies being implemented at larger rates? Part of removing barriers to RBIS adoption may be understanding what instructors believe about how students learn.

In order to answer a small portion of this question, I studied physics instructors’ beliefs about homework. This study is taken up in two parts. First, I analyzed 25 interviews with physics instructors from various types of institutions in Minnesota (Yerushalmi et al., 2007; Henderson, et al., 2007). Second, I used the themes from the interview analysis to create a survey, which was then sent to physics instructors in the state of Minnesota. Using both the interview analysis and the survey responses, I created an empirical model of physics instructors’ beliefs about homework. There were four main results. First, there is agreement that the goals of doing homework are to learn problem solving and physics principles. Second, homework is seen as necessary for learning physics by a strong majority of instructors, but it is not seen as sufficient for learning. Third, there is a limited number of tasks or actions that instructors believe that students should do while they are solving problems. Fourth, there is evidence that physics instructors fall onto a continuum of beliefs regarding how students should approach solving problems on their homework. On one end of this continuum, instructors believe students should follow an algorithmic process that includes the steps to solving any problem. On the other end of the continuum, instructors believe students should have a more open approach to solving problems where they consider all the tools and principles available to them in order to make decisions about how to solve a problem. These results can inform creators of curriculum and professional development as they try to reach out and connect with instructors and perhaps change their beliefs and practice.

The weekly calendar is also available via subscription to the physics-announce mailing list, and by RSS feed.